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The DPS-navigator concept is a self-contained autonomous navigation hardware
and software system that provides spacecraft on-board navigation throughout the
solar system. It works like the Global Positioning System (GPS), but without the
need for the satellite infrastructure. For the lunar Gateway, DPS-navigator
observes lunar landmarks to determine position information and computes orbital
maneuvers to maintain the Gateway orbit when the crew is not present or to reduce
the crew's dependence on ground-based mission control. The optical only design
is small (25 x 12 x 12 c¢m) and light weight, less than 5 kg. Power requirements
are less than 12 W with self-contained processing. Data link requirements
(infrequent for set-up, monitoring, and maintenance) are less than 50 MB per day.
DPS-navigator leverages prior flight demonstrations of autonomous navigation
(DS-1, Deep Impact, Stardust) to provide a more general and robust on-board
solution. DPS-navigator provides precise lunar landmark measurements using
narrow angle field of view (FOV) optics and precise pointing knowledge using
wide angle FOV optics. A more robust configuration of the DPS-navigator uses
optical and radiometric sensing. For the lunar Gateway, the optical only version
is sufficient given the abundance of optical targets in the form of lunar surface
landmarks. On-board navigation performance results using lunar landmarks are
presented in this paper and shown to provide an alternative to traditional deep
space network Earth-based radiometric techniques; thus, freeing Earth tracking
stations and ground personnel for other support.

INTRODUCTION

Beyond near-Earth and the reach of Global Navigation Satellite Systems (GNSS), spacecraft
navigation relies on traditional Earth-based techniques. Radiometric and/or optical measurements
from special ground-based observatories can be used to guide spacecraft to the far reaches of the
solar system. Fully autonomous navigation systems are primarily desired to enable collection of
science observations where long light-time delays with Earth cannot be tolerated. High speed small
body flybys or impacts are examples of scenarios that benefit the most from autonomous naviga-
tion. Increasingly, eliminating the reliance on limited or compromised Earth-based tracking re-
sources also drives the need.

* Mission Design and Navigation Section, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Drive, Pasadena, CA 91109.



To date, a single deep space autonomous navigation system has been demonstrated, the same
one on three different missions. This system, “AutoNav,” used optical data of the approach tar-
get.!*** Radiometric data provides excellent geocentric navigation, but for any target other than
Earth, Moon and Mars, in situ target-relative navigation will be required for precise targeting (such
as landing). Short of planting radio beacons on the targets of interest, optical navigation must be
used in such cases. To provide the ability to return a spacecraft safely to Earth without a ground
link (e.g., during periods of compromised telecommunications) optical measurements and trajec-
tory change maneuvers must be processed on-board autonomously.

DPS-Navigator is a self-contained “box” that consists of the sensors, computer and flight soft-
ware that leverage the “AutoNav” experience. It uses self-pointing narrow and wide-angle cameras
to take images of near-field objects (distant asteroids, or a planetary target) and background stars
to determine the position of the camera (and therefore the host spacecraft). These processed data,
reduced to precise inertial angle measurements, could be passed to a resident GN&C system, or
processed within DPS-Navigator itself, to provide prime or back-up position determination. The
determination of spacecraft position and velocity is via a least-squares estimate using dynamical
models of the spacecraft motion through the solar system with all gravitational and non-gravita-
tional perturbations accurately accounted for. With the estimate of the position and velocity in
hand, trajectory correction maneuvers can be computed.

Optical Navigation (OpNav) is an ideal way to provide automated and autonomous navigation
for deep space exploration to bodies whose positions are not well known. Missions to bodies other
than the Moon or Mars, that demand very precise positioning relative to the surface of that body
(e.g. 10’s of meters), will require in situ target relative navigation. In the case of a spacecraft re-
turning to Earth, though the position of the Earth in heliocentric space is very well determined (to
the meter level), without an Earth-radio-link it may be impossible to accurately determine the po-
sition of the Earth (e.g., to the level of a few km) due to the uncertainty of the position of the Earth’s
limb as seen through the atmosphere. For this, alternative means of relative navigation may be
necessary, such as optically observing artificial satellites, or even the Moon itself, such a capability
is possible with DPS-Navigator.
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Figure 1. DPS-Navigator

Though OpNav is the core capability for in situ observations of the target, DPS-Navigator would
also feature an option to provide powerful 1-way Doppler radiometric measurements from a
known-source beacon, which could be an Earth station or another spacecraft. Software within the
Iris radio® extracts these observables and provides them to the DPS-Navigator orbit determination
filter. For the highest accuracy radiometric data, a very stable frequency reference is necessary,
which could be provided by the Deep Space Atomic Clock (DSAC) that is being developed by
STMD. The DSAC conditions the frequency reference being used to drive the transmitter within



the Iris radio. In combination (Figure 1), the 1-way radiometric and optical data of the DPS-
Navigator provide a robust navigation solution for virtually any deep space navigational challenge.

Exploration spacecraft like Orion, require automated safe return. The Orion project currently
has a requirement to provide for automatic safe return of the crew and spacecraft to Earth in an
emergency, and especially in the event that the radio-link is compromised to the point of making
Earth-based radiometric navigation impossible.® In this event, without a backup capability, loss of
crew or loss of mission is highly possible if not probable. For this serious contingency, DPS-
Navigator could serve as a remediation, by providing optical measurements to the resident GN&C
system.

DPS-Navigator integrates several flight-proven or flight-inheritance technologies: the miniature
MRO OpNav telescope’, the Iris radio (which flew to Mars on the MARCO cubesat missions),
motor-actuators and rate control (as will fly on OCO-3 and has flown on GRAIL), the Mars2020
EECam CMOS 20Megapixel camera electronics and detectors, the Deep Impact AutoNav autono-
mous navigation flight software system (with additional Stardust and Deep Space 1 flight heritage),
the MER X-band patch antenna (for the 1-way radio link navigation), and a command and control
s/w suite that has been the automated robotic control language used on over a dozen of NASA’s
missions, including the Spitzer space telescope and Mars Reconnaissance Orbiter.*’

The overall operation of DPS-Navigator is very analogous to the manner of operation of a star
tracker providing automated spacecraft attitude. Though planned as an instrument that could be
replicated for multi-use on a variety of NASA’s missions (as well as commercial missions), the
system can be adapted to a number of configurations. Where self-pointing cameras cannot be ac-
commodated, due to mass or other constraints, the AutoNav software aboard the IRIS software-
defined-radio (SDR) could accommodate images from a small fixed camera, making the DPS-
Navigator system compatible even for use on a CubeSat. But for crewed and larger robotic mis-
sions the capabilities of the full DPS-Navigator instrument provides the greatest cost to benefit
ratio.

In addition, the instrument could serve as a powerful sensor to detect internal structure, strength
and motion of dynamic and energetic bodies such as Europa, Io, and Enceladus.'®'"'*!* The genesis
of the DPS-Navigator instrument is the Advanced Pointing and Imaging Camera (APIC) that has
completed risk-reduction engineering work under SMD’s Homesteader program. Figure 2. shows
the dual optical sensors designed to obtain very high-resolution images of planetary surfaces while
simultaneously determining the pointing from the camera to that surface. This enables extraction
of information related to motions and deformations in planetary surfaces. The requirements to
obtain this very precise geometric information are exactly the same as those required for high-
precision optical navigation; thus, the DPS-Navigator/APIC instrument could perform both func-
tions. In 2014, DPS-Navigator was awarded a US patent for the various options and configurations
in which DPS-Navigator can be instantiated.'*
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Figure 2. Optical Sensors of DPS-Navigator

NAVIGATION PERFORMANCE AT THE LUNAR GATEWAY

The proposed lunar Gateway near the Moon is planned as a staging point for renewed lunar
exploration and eventual deep space crewed missions. To support these plans, the Gateway is in-
tended to serve as a proving ground for deep space technologies like the DPS-Navigator.

The current Gateway orbit is a cislunar Near Rectilin-
ear Halo Orbit (NRHO).">'® The baseline NRHO is a
southern halo in a 9:2 resonance with the Iunar synodic
period. The orbit passes through perilune over the north
lunar pole approximately every 6.5 days with a close ap-
proach radius of about 3,200 km and an apolune radius of
approximately 70,000 km. While the target NRHO exhib-
its nearly stable characteristics, an uncontrolled spacecraft
in the NRHO will eventually depart the vicinity of the
Moon. Small orbit maintenance maneuvers (OMMs) are
required to ensure long-term operations in the NRHO, and
the cost of the OMM depends on the quality of the orbit
determination solution available. Solar pressure and the
gravity gradient near perilune affect the spacecraft atti-
tude, and moments can be significant, especially on long
Gateway stacks. An appropriately sized attitude control
system is needed to maintain spacecraft attitude. The fre-
quency of attitude control activity significantly drives or-
bit determination accuracy.

A Power and Propulsion Element (PPE) is envisioned  Figure 3. DSG Orbit View from Earth
to be the first and primary module of the Gateway. It
would also provide communications and navigation tracking services. While the PPE has low-thrust
propulsion capabilities, chemical propulsion maneuvers are required for OMMs. The PPE would



be the preferred element to host DPS-Navigator; however, any future element with sufficient PPE
communications interfaces could host DPS-Navigator.

The principal navigation challenge in cislunar space is to continuously maintain knowledge of
the orbital position and velocity to enable design and execution of OMMs. Modelling of gravita-
tional and non-gravitational perturbations are refined using Earth-based radiometric tracking from
NASA’s Deep Space Network (DSN). Orbit determination performance using the DSN suggests at
least three contacts per week, each 6-hours long, are needed to meet the velocity knowledge re-
quirements.'” This paper extends that analyses to show the performance using on-board optical
measurements only.

Ground-Based Orbit Determination Performance

Ground-based orbit determination uncertainties were assessed by conducting a linear covariance
analysis. Varying amounts of DSN radiometric tracking measurements were assumed. Since the
DSN stations are globally distributed (Madrid/Spain, Canberra/Australia, Goldstone/USA), near-
continuous tracking is possible. While this is beneficial during crewed operations, it is desirable to
understand the minimal tracking needs - especially during uncrewed periods.

The DSN measurements used in this study were S-band, two-way Doppler and range. Simulated
DSN ground station observations were constrained to be no longer than six-hours and to be above
10 deg elevation. Doppler measurements were assumed to be averaged over 60 seconds with 1
mm/s (1o) random noise. Range measurements were simulated with 1 m (16) random noise and
were accumulated over five-minute intervals. Key dynamical error sources affecting the orbit de-
termination knowledge included: attitude control via Control Moment Gyro (CMG) or Reaction
Wheel (RW) desaturations, imperfect maneuver executions and venting due to crew related activi-
ties. Assumptions for the size and frequency of these error sources are shown in Table 1.

Table 1 — Orbit Determination Error Assumptions

Oblateness'!

8x8

Error Source Model Parameters Error : Frequency Reference
Gravity: Point Mass Earth, Sun & Jupiter none JPL DE430
Gravity: Central Body Lunar degree and order none GRAIL: GL900C

Solar Radiation Pressure

PPE Solar panels: 200m?
x 2, PPE Bus: 5m diame-
ter

10 % (10) : constant bias

neuvers

Attitude Control: PPE thrusting (chemical) | 0.5, 1.0, 2.0 cm/s (1o) all

CMG/RW Desaturations axes : once per orbit at
~20° before apolune

Orbit Maintenance Ma- | PPE thrusting (chemical) | 2 cm/s (15) all axes : once

per orbit at apolune

Venting: Pressure Stochastic acceleration, 7.7x107"° km/sec? (1o) : MPCV Technical
Swing Adsorption'® Uncorrelated Process Every 623.9 sec Brief, FltDyn-
Noise: 4x107 ft*/sec? CEV-16-50
Venting: Waste Water Stochastic acceleration, 1.0x10™"° km/sec? (1) : MPCV Technical
Dumps'® Uncorrelated Process Every 3 hours Brief, FltDyn-
Noise: 1x107 ft*/sec? CEV-16-50




DSN Radiometeric
Tracking

S-Band Doppler

1.0 m (15) : Every 60 sec

DSN Radiometeric
Tracking

S-Band Range

1.0 m (15) : Every 10 min

On-Board Optical'®

Lunar Landmarks

0.25 pixels (1o) : 2/day

Figure 4 shows position and velocity error profiles over a nine-week simulation period. The
DSN tracking frequency of three passes per week shows that the primary velocity requirement (<10
cm/sec, 30) can be met. Dynamical events such as perilune (red dashed vertical lines), wheel de-
saturations (light grey vertical dashed lines) and OMMs (blue vertical dashed lines) correlate with
error increases as expected.
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Figure 4. DSN Tracking: 3 Passes/Week
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During crewed operations the PPE wheel desaturation frequency increases markedly from once
every orbit to once every 140 minutes. In addition, venting from the Orion crew element, as docu-
mented in D’Souza and Barton, introduces orbit determination errors as shown in Figure 5. With
near-continuous tracking during crewed operations, velocity uncertainties from these error sources
remain below the established requirement.

Crew venting perturbations have the largest effect when the stack is least massive. The venting
acceleration errors are directly proportional to the stack mass. For example, the CO, puff accelera-
tion error in each axis for configuration 2 (42 t) is 4.4 x 10”7 m/s? (15). The acceleration uncertain-
ties for the more massive stack of configuration 5 (80 t) is 2.3 x 107 m/s* (15).
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Figure 5. DSN Tracking: Continuous During Crewed Operations

Given the impact of wheel desaturation errors on the orbit determination, additional sensitivity
analysis results were obtained. For uncrewed operations, three, six-hour DSN passes per week are
adequate to maintain orbit determination knowledge with desaturation errors up to 2 cm/s (1o).
When crew elements are included, the tracking requirements increase to nearly continuous.

On-Board Orbit Determination Performance
The same ground-based simulation was extended using on-board optical observations. Figure 6
shows the global distribution of approximately 200 lunar landmarks. Error assumptions related to

optical processing are included in Table 1
lyzed with implementation assumptions
provided in Table 2. FOV is the camera
field-of-view, ® is the field-of-view of
one camera pixel (typically known as the
“instantaneous field-of-view” or IFOV).
Nadir point, sunlit observations were as-
sumed to be collected twice per day.

Figures 7-9 show position and veloc-
ity error profiles for the low, medium
and high-resolution cameras. For all
cases the velocity errors exceed the 10
cm/s (30) requirement around perilune.
Since OMMs are planned to be designed
and executed near apolune (within 2
days) these error excursions would not
impact the ability to accurately design
the OMMs.

. High, medium and low-resolution cameras were ana-

mLow-Res
mMedium-Res
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Figure 6. Optical Lunar Landmarks Globally Distributed

Table 2. Representative camera implementations.

Focal Length
Name FOV (deg) ® (urad) (mm)
Low-Res 28 128 502
Med-Res 7 60 234
High-Res 0.6 10 2619
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Figure 7. On-Board Optical: Low-Resolution Camera
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Figure 8. On-Board Optical: Medium-Resolution Camera
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Figure 9. On-Board Optical: High-Resolution Camera
CONCLUSIONS

An optical only version of DPS-Navigator, relying on lunar landmark tracking from the baseline
NRHO Gateway orbit, can meet existing orbit knowledge requirements needed to design and exe-
cute orbit maintenance maneuvers. Thus, an alternative to traditional Earth-based radiometric tech-
niques would be available to free Earth tracking stations and ground personnel for other support.
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